Modeling pavement performance by combining field and experimental data

نویسنده

  • Jorge Alberto Prozzi
چکیده

Modeling pavement performance by combining field and experimental data The accurate prediction of pavement performance is important for efficient management of the surface transportation infrastructure. By reducing the error of the pavement deterioration prediction, agencies can obtain significant budget savings through timely intervention and accurate planning. The goal of this research was to develop a methodology for developing accurate pavement deterioration models to be used primarily for the management of the road infrastructure. The loss of the riding quality of the pavement was selected as the performance indicator. Two measures of riding quality were used: serviceability (Present Serviceability Index, PSI) and roughness (International Roughness Index, IRI). An acceptable riding quality is important for both the road user and the goods being transported. Riding quality affects the comfort of the user for whom the road is provided, and the smoothness with which goods are moved from one point to another. The vehicle 2 operating costs and the costs of transporting goods increase as the road riding quality deteriorates. These costs are often one order of magnitude more important than the cost of maintaining the road to an acceptable level of service. The initial incremental models developed in this dissertation predict serviceability as a function of material properties, pavement structural characteristics, traffic axle configuration, axle load, and environmental variables. These models were developed applying nonlinear estimation techniques using an experimental unbalanced panel data set (AASHO Road Test). The unobserved heterogeneity among the pavement sections was accounted for by using the random effects approach. The serviceability models were updated using joint estimation with a field panel data set (MnRoad Project). The updated model estimates riding quality in terms of roughness. This was possible by applying a measurement error model to combine both data sources. The main contribution of this research is not the development of a deterioration model itself, but rather the demonstration of the feasibility of using joint estimation and its many advantages, such as: (i) identification and quantification of new variables, (ii) efficient parameter estimates, (iii) bias identification and correction, and (iv) use of a measurement error model to combine apparently incompatible data sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Pavement Performance Models by Combining Experimental and Field Data

The objective of this paper is to demonstrate the development of pavement performance models by combining experimental and field data. A two step approach was used. In the first step a riding quality model based on serviceability consideration is developed. The data set of the American Association of State Highways Officials ~AASHO! Road Test is used to this effect. Due to the experimental natu...

متن کامل

Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data

Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...

متن کامل

Evaluating the Performance of Dowel in PCC Pavement of Roads using ABAQUS Finite Element Software

In Portland Cement Concrete (PCC) pavement of the roads, dowels bar transfers vehicle loading to the unloaded slab. Load Transfer Efficiency (LTE) is used to evaluate dowel bars in PCC pavement. This parameter is defined as the vertical displacement ratio of the loaded slab versus the unloaded slab. In this study, the impact of effective factors (friction coefficient between dowel and concrete ...

متن کامل

Backcalculation of Non-Linear Pavement Moduli Using Finite-Element Based Neuro-Genetic Hybrid Optimization

The determination of pavement layer stiffness is an essential step in evaluating the performance of existing road pavements and in conducting pavement design and analysis using mechanistic approaches. Over the years, several methodologies involving static, dynamic, and adaptive processes have been developed and proposed for obtaining in-situ pavement layer moduli from Falling Weight Deflectomet...

متن کامل

Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks

Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002